Chongqing

Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction


Yubo Ma^{1†*}, Zehao Wang^{2†*}, Yixin Cao^{‡3} Mukai Li^{4†}, Meiqi Chen^{5†}, Kun Wang⁴, Jing Shao⁴

¹ Nanyang Technological University ² KU Leuven ³ Singapore Management University ⁴ SenseTime Group Limited ⁵ Peking University

yubo001@e.ntu.edu.sg, zehao.wang@esat.kuleuven.be

2022. 03. 27 • ChongQing

ACL_2022

mtettigence

NATURAL LANGUAGE PROCESSING

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

Event type: Transaction	n.Transfer-Ov	wnership
Sentence-level EAE	Seller	Artifact
Cash - strapped Viven	di wants to <t< td=""><td>> sell Universal Studios, its Universal</td></t<>	> sell Universal Studios, its Universal
theme parks and telev	ision producti	
Event type: justice.juc	licial conseque	ences.execute
Document-level EAE	Ex	xecutor
	Also and a second	rated a mass <t> execution </t> that puts
of them belonged to sentenced to death	Nimr al - Nir for sermons	Forty-seven heads rolled on Saturday. One mr, a revered Shi'ite cleric who had been in which he criticized the government country 's Shi'ite minority).

Figure 1: Examples of (top) sentence-level and (bottom) document-level event argument extraction. Trigger words are included in special tokens <t> and </t>. Underlined words denote arguments and arcs denote roles.

Method

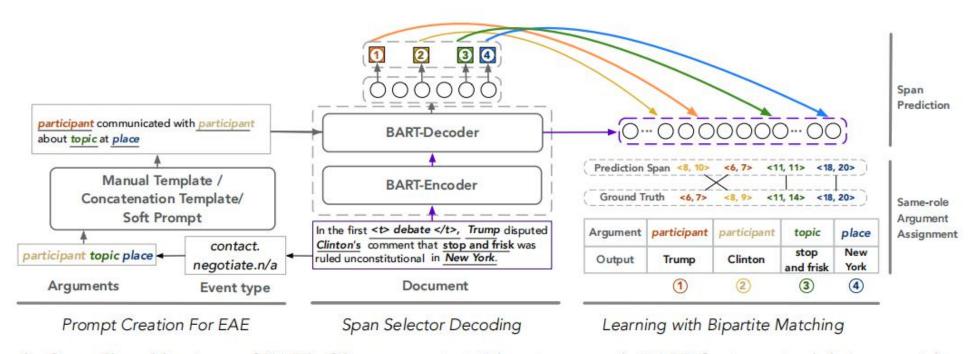
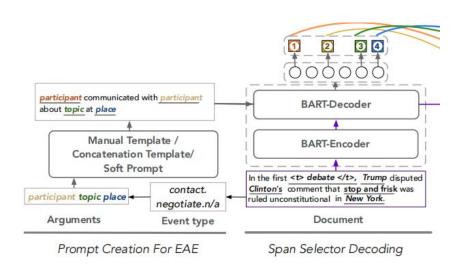
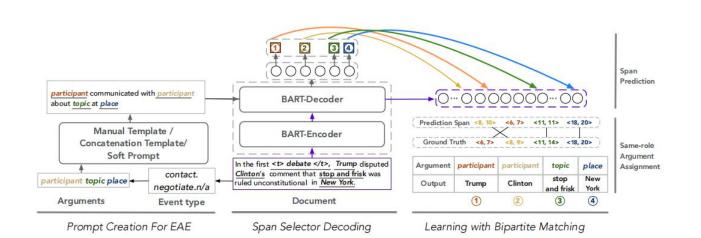



Figure 2: Overall architecture of PAIE. Given a context (about an event), PAIE first creates joint prompt based on its event type. Then the context and prompt are fed into the BART-encoder and BART-decoder to generate context representation and role-specific span selectors. Multiple span selectors extract argument spans from the context simultaneously. A bipartite matching loss finally optimizes the global span assignment.

Method

Prompt Creation for EAE


Participant communicated with Participant about topic at Place.

Prompt Type	Prompt Example
MA Template	<u>Victor</u> (and <u>Victor</u>) defeated in <u>ConflictOrElection</u> at <u>Place</u> (and <u>Place</u>)
CA Template	<u>Victor</u> (<u>Victor</u>) <u>ConflictOrElection</u> <u>Place</u> (<u>Place</u>)
SF Prompt	<pre><vic_left0> Victor <vic_right0> (<vic_left0> Victor <vic_right0>) Defeated <conf_left0> ConflictOrElection <conf_right0> <place_left0> Place <place_right0> (<place_left0> Place <place_right0>)</place_right0></place_left0></place_right0></place_left0></conf_right0></conf_left0></vic_right0></vic_left0></vic_right0></vic_left0></pre>

Table 1: Variants of prompt introduced in section 3.2. MA:Manual. CA:Concatenation. SF:Soft. Words with angle brackets in Soft Prompt denote role-specific pseudo tokens of continuous prompt.

Method

Span Selector Decoding

$$\tilde{X} = [x_1, x_2, ..., \langle \mathbf{t} \rangle, x_{trig}, \langle \prime \mathbf{t} \rangle, ..., x_n]$$

$$\begin{split} &H_X^{(enc)} = \text{BART-Encoder}(\tilde{X}) \\ &H_X = \text{BART-Decoder}(H_X^{(enc)}; H_X^{(enc)}) \\ &H_{pt} = \text{BART-Decoder}(Pt; H_X^{(enc)}) \end{split} \tag{1}$$

role-specific span selector:

For k-th slot in the joint prompt we mean-pool its corresponding representations from h_{pt} and obtain role feature $\psi_k \in \mathbb{R}^h$

$$\psi_k^{(start)} = \psi_k \circ w^{(start)} \in R^h$$

$$\psi_k^{(end)} = \psi_k \circ w^{(end)} \in R^h$$
(2)

$$\theta = \begin{bmatrix} w^{(start)}; w^{(end)} \end{bmatrix} \in R^{h \times 2} \quad \theta_k = \begin{bmatrix} \psi_k^{(start)}; \psi_k^{(end)} \end{bmatrix} \text{ is exactly the span selector for } k\text{-th slot in the prompt.}$$

Learning with Bipartite Matching

Method

Span Prediction:

$$\log i t_k^{(start)} = \psi_k^{(start)} H_X \in R^L
\log i t_k^{(end)} = \psi_k^{(end)} H_X \in R^L$$
(3)

$$(\hat{s}_k, \hat{e}_k) = \underset{(i,j) \in L^2, i < j}{\operatorname{arg \, max}} \operatorname{logit}_k^{(start)}(i) + \operatorname{logit}_k^{(end)}(j)$$
(4)

Same-role Argument Assignment:

optimal assignment $\hat{\sigma}$,

$$p_k^{(start)} = \text{Softmax}(\text{logit}_{\hat{\sigma}(k)}^{(start)})$$

$$p_k^{(end)} = \text{Softmax}(\text{logit}_{\hat{\sigma}(k)}^{(end)})$$
 (5)

$$\mathcal{L}_k = -(\log p_k^{(start)}(s_k) + \log p_k^{(end)}(e_k)) \quad (6)$$

M-1-1	DIM	ACE05		RAMS		WIKIEVENTS		NTS
Model	PLM	Arg-I	Arg-C	Arg-I	Arg-C	Arg-I	Arg-C	Head-C
FEAE (Wei et al., 2021)	BERT-b	-	-	53.5*	47.4*	_	(-)	-
DocMRC (Liu et al., 2021a)	BERT-b	_	-	12	45.7*	<u>11</u>	43.3*	<u>11</u>
OnalE (Lin at al. 2020)	BERT-b	65.9	59.2	3 .5 0		5		-
OneIE (Lin et al., 2020)	BERT-1	73.2	69.3	-	-		(7)	77
EEOA (Du and Cardia 2020)	BERT-b	68.2*	65.4*	46.4	44.0	54.3	53.2	56.9
EEQA (Du and Cardie, 2020)	BERT-1	70.5	68.9	48.7	46.7	56.9	54.5	59.3
PART Con (List of 2021)	BART-b	59.6	55.0	50.9	44.9	47.5	41.7	44.2
BART-Gen (Li et al., 2021)	BART-1	69.9*	66.7*	51.2	47.1	66.8	62.4	65.4
EEOA DADT (Our implementation)	BART-b	68.9	67.0	49.4	46.3	60.3	57.1	61.4
EEQA-BART (Our implementation	BART-1	73.1	72.2	51.7	48.7	61.6	57.4	61.3
DATE (Ours)	BART-b	73.0	70.6	53.0	49.8	68.2	63.4	66.4
PAIE (Ours)	BART-1	75.7	73.3	55.6	53.0	69.6	65.7	69.2

Table 2: Overall performance. We highlight the best result and underline the second best. * means the value from the original paper. **b** in column **PLM** denotes base model and **l** denotes large model.

Model	ACE05	Arg-C RAMS	WIKI	
PAIE	70.6±0.85	49.8 ± 0.77	63.4 ± 1.04	
- bipartite matching	70.3 ± 0.90	49.4 ± 0.69	62.8 ± 0.48	
- multi-arg prompt	66.2±1.07	47.7 ± 0.81	61.8 ± 0.85	
- role-specific selector	67.0±0.64	$46.3{\pm}0.77$	57.1 ± 0.82	
EEQA	65.4	44.0	53.2	

Table 3: Ablation study on three benchmarks.

Concatenate	PLM	ACE05	RAMS	WIKIEVENTS
	BE-b	65.9	46.3	62.9
/	BA-b	70.2	49.3	62.8
✓	BA-l	72.3	51.7	<u>65.1</u>
X	BA-b	70.6	49.8	63.4
×	BA-1	73.3	53.0	65.7

Table 4: Arg-C F1 of different PLMs (BE and BA denote BERT and BART) and usages of prompt (encoder or decoder). Concatenate stands for concatenating prompt with context as inputs of encoder.

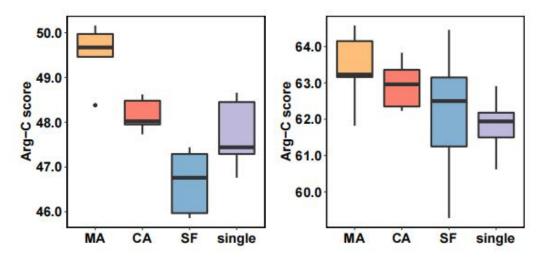


Figure 3: Arg-C F1 using three different types of prompts in Table 1 plus the single template on document-level test set (left) RAMS and (right) WIKIEVENTS.

Model	Trigger-Argument Distance d							
	$-2_{[79]}$	$-1_{[164]}$	$0_{[1811]}$	$1_{[87]}$	$2_{[47]}$			
BART-Gen	17.7	16.8	44.8	16.6	9.0			
DocMRC	21.0	20.3	46.6	17.2	12.2			
FEAE	23.7	19.3	49.2	25.0	5.4			
EEQA-BART	15.6	24.0	51.7	23.5	8.0			
PAIE	21.7	27.3	54.7	29.4	25.4			

Table 5: Performance (Arg-C F1 score) breakdown by argument-trigger distance *d* on RAMS development set. The argument number of each case is given in the bracket.

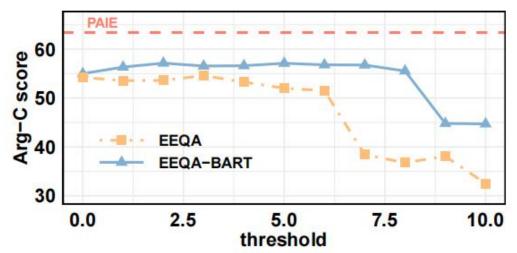


Figure 4: Arg-C F1 w.r.t different thresholds for WIKIEVENTS. We draw the performance of PAIE in red dashed line for comparison (no threshold tuning).

Model	WIKIEVENT Argument Number n						
	$1_{[468]}$	$2_{[66]}$	3[15]	$\geq \mathbf{4_{[17]}}$			
EEQA-BART	$ 58.0_{(-6)} $	59.7(-2)	28.6(-9)	10.0(-18)			
PAIE (Ours)	64.7	61.4	38.1	10.0 ₍₋₁₈₎ 28.6			

Table 6: Arg-C F1 on WIKIEVENTS breakdown by argument number n of one role. The case number is given in the square bracket.

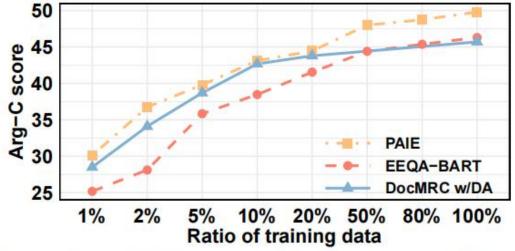


Figure 5: Arg-C F1 score on RAMS test set w.r.t different data ratio. w/DA denotes data augmentation.

Model	ACE05		RAMS		WIKIEVENTS	
Model	В	L	В	L	В	L
BART-Gen	5.8	12.4	33.2	54.8	19.1	29.0
EEQA-BART	11.8	36.0	66.0	187.4	30.9	83.8
PAIE	2.9	8.4	19.0	38.6	8.4	18.3

Table 7: Inference time in second for different models on the whole test set of ACE05, RAMS, WIKIEVENTS.

Thank you!

